An Effective Roth's Theorem for Function Fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite’s Theorem for Function Fields

Hermite’s theorem states that there are only finitely many number fields with bounded discriminant. In this work, we investigate an analog of Hermite’s theorem for function fields: there are only finitely many separable function fields with bounded degree and discriminant. We prove this in the case that the function fields are unramified at ∞. Although Hermite’s theorem for function fields is k...

متن کامل

An Effective Universality Theorem for the Riemann Zeta Function

Let 0 < r < 1/4, and f be a non-vanishing continuous function in |z| ≤ r, that is analytic in the interior. Voronin’s universality theorem asserts that translates of the Riemann zeta function ζ(3/4 + z + it) can approximate f uniformly in |z| < r to any given precision ε, and moreover that the set of such t ∈ [0, T ] has measure at least c(ε)T for some c(ε) > 0, once T is large enough. This was...

متن کامل

Rudnick and Soundararajan's theorem for function fields

In this paper we prove a function field version of a theorem by Rudnick and Soundararajan about lower bounds for moments of quadratic Dirichlet L–functions. We establish lower bounds for the moments of quadratic Dirichlet L–functions associated to hyperelliptic curves of genus g over a fixed finite field Fq in the large genus g limit.

متن کامل

Prime Number Theorem for Algebraic Function Fields

Elementary proofs of the abstract prime number theorem of the form A(w) = qm + 0(qmm~i) for algebraic function fields are given. The proofs use a refinement of a tauberian theorem of Bombieri. 0. Introduction The main purpose of this paper is to give elementary proofs of the abstract prime number theorem for algebraic function fields (henceforth, the P.N.T.) which was established in the author'...

متن کامل

Explicit Implicit Function Theorem for All Fields

Remark 1. The conditions P (X, f(X)) = 0 and f(0) = 0 imply that P (0, 0) = 0. As P ′ Y (0, 0) is also 0, the sums in both expressions of [X]f are finite. Remark 2. When P (X,Y ) = Xφ(Y ), where φ(X) ∈ K[[X ]] and φ(0) 6= 0, we obtain the Lagrange inversion formula [X]f = [Y ](φ(X) − Y φ(X)φ(X)). If the characteristic of K is 0, we also have the following form [X]f = [Y ]φ(Y ). Remark 3. When P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 1996

ISSN: 0035-7596

DOI: 10.1216/rmjm/1181072046